

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

О состоянии разработок в области электропередач постоянного тока

Передачи и вставки постоянного тока - частный аспект создания оборудования активно-адаптивных сетей

Техника статических преобразователей электрической энергии достигла уровня, обеспечивающего широкое применение в электроэнергетике, как полноценное средство трансформации форм электрической энергии.

Передачи и вставки постоянного тока перестали быть проблемой, требующей привлечения специализированных НИИ.

Технологическая основа создания устройств типа СТАТКОМ, активных фильтров, мощных тиристорных выпрямителей едина и стала практически общедоступной для специалистов и понятной для реализации.

Сегодня возможностями для реализации проектов ППТ и устройств FACTS располагают как крупные НИИ, так и малые предприятия: ПАО «НТЦ ФСК ЕЭС», ФГУП ВЭИ, ОАО «ЭНИН», ОАО «ЭЛЕКТРОВЫПРЯМИТЕЛЬ», ООО «Айдисгрупп», ООО «Энерком-сервис», ООО «НПП ЛМ Инвертор», НПЦ «САЙРУС ЭНЕРГО»,

Высказывания, бытующие в энергетических компаниях о том, что в России нет специалистов и предприятий, способных создавать оборудование для передач и вставок постоянного тока не соответствуют действительности! Вопрос только в целесообразности и эффективности их создания (длинные ВЛ и КЛ, специфические применения, например для токоограничения).

Передачи и вставки постоянного тока - частный аспект создания оборудования активно-адаптивных сетей

Примеры:

Практические разработки:

- √HTЦ ФСК, Энерком-сервис СТАТКОМ 50 МВт, 15 кВ;
- ✓ НТЦ ФСК, Айдис-групп КВПУ для ППТ 20 кВ, 50 МВт со сверхпроводящим кабелем;
- √НТЦ ФСК, Энерком-сервис, НПЦ «САЙРУС ЭНЕРГО» вставка постоянного тока 200 МВт на ПС Могоча.
- √ФГУП ВЭИ, Электровыпрямитель, ЛМ Инвертор активный фильтр высших гармоник мощностью 16 Мвар для ПС Выборгская;
- √ОАО «Электровыпрямитель, ЛМ Инвертор комплект из 6-и тиристорных выпрямителей для плавки гололеда мощностью 132 МВт с единой цифровой системой управления.
- **✓ ОАО «ЭНИН»**, Электровыпрямитель фазоповоротное устройство 220 кВ с тиристорным коммутатором.
- **УЭнерком-сервис, Айдис-групп, НИДЕК статические тиристорные компенсаторы.**

Теоретические:

- ФГУП ВЭИ Разработка технических предложений по реконструкции Выборгского преобразовательного комплекса на основе инновационных схемно-технических решений;
- ФГУП ВЭИ Разработка базовых технологий и комплектного высоковольтного преобразовательного оборудования для линий передач и вставок постоянного тока на основе нового поколения полупроводниковых приборов.

Технические предложения по реконструкции Выборгского преобразовательного комплекса

Номинальные параметры КВПУ

Номинальное напряжение полюсов ± 300 кВ

Номинальная мощность 500 МВт

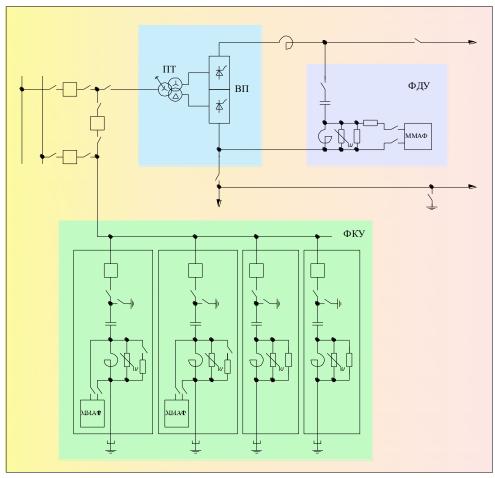
Номинальное напряжение сетей переменного напряжения

на ЛАЭС-2 330 кВ

на ПС «Выборгская», в сторону Финляндии 400 кВ

на ПС «Выборгская», в сторону ЛО 330 кВ

Диапазон регулирования передаваемой


мощности 100 - 500 МВт

Генерация и регулирование реактивной мощности

на сетевых выходах ВПУ 317 – 669 Мвар.

Технические предложения по реконструкции Выборгского преобразовательного комплекса

УПРАВЛЕНИЕ ПОДСТАНЦИЕЙ Система переменного напряжения (AC)

УПРАВЛЕНИЕ ПОДСТАНЦИЕЙ Система постоянного напряжения (DC) УПРАВЛЕНИЕ ПОЛЮСОМ Фильтрокомпенсирующее устройство (AC) УПРАВЛЕНИЕ ПОЛЮСОМ Вентильный преобразователь (AC/DC)

Схема полюса HVDC

Подготовлены техническое предложение по основным видам оборудования:

- Преобразовательным трансформаторам;
- > Сглаживающим реакторам;
- > Вентилям (на фототиристорах ТФ 183-2000);
- Фильтро- компенсирующим конденсаторным батареям;
- **>** CYP3A.

Тиристорные вентили на основе фототиристоров

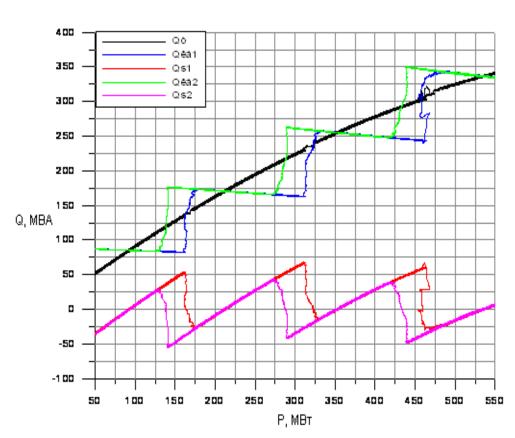
Тиристор ТФ183-2000

Тиристор ТФ183-2000 разработан ВЭИ и ОАО «Электровыпрямитель. ТФ 183-2000 является полупроводниковым прибором нового типа – включаемый светом тиристор (light triggered thyristor LTT).

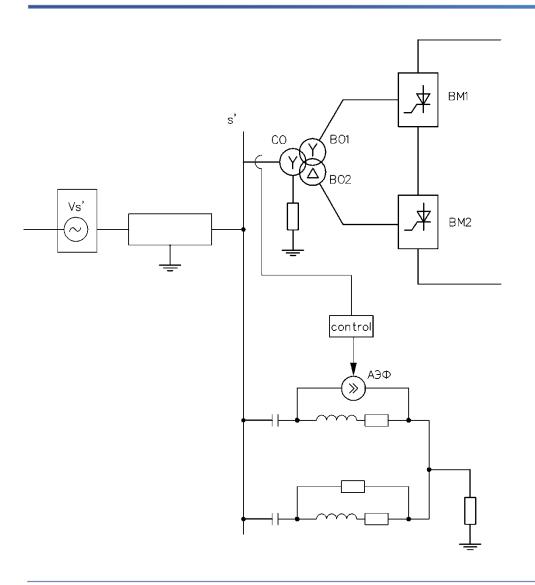
Отличительные особенности:

- Прямое оптическое включение через оптоволокно. :
- Встроенное защитное включение при превышении уровня прямого напряжения;
- Внутренняя защита от повторного включения вследствие неполного восстановления.

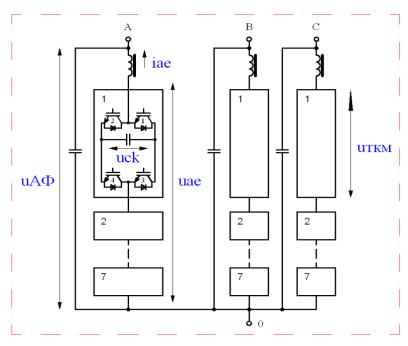
Модуль тиристорного вентиля 12 кВ, 2500 A



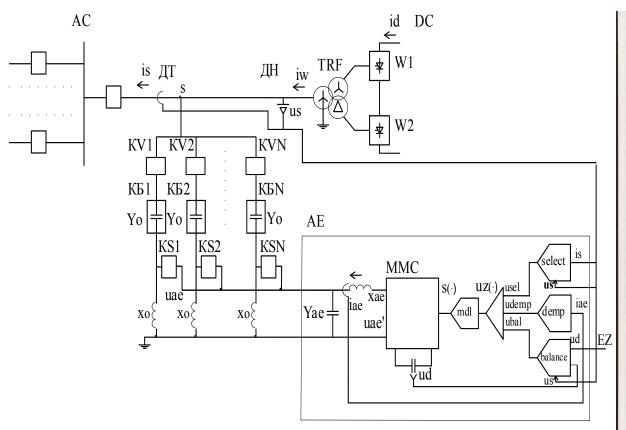
Технические предложения по реконструкции Выборгского преобразовательного комплекса


Способ регулирования реактивной мощности

- Основа синхронизированные переключения конденсаторных батарей мощностью 83 MVAR;
- Плавная подстройка углов включения вентилей и РПН.



Активная фильтрация



Активный элемента на основе модульного многоуровневого преобразователя напряжения

Однородное фильтрокомпенсирующее устройство с активным элементом

Достигается решение двойственной задачи:

- фильтрация;
- подстройка реактивной мощности.

Разработка базовых технологий и комплектного высоковольтного преобразовательного оборудования для линий передач и вставок постоянного тока (ФОТОН-2)

Фототиристор ТФ193-2500 с самозащитой от пробоя в период восстановления запирающих свойств.

сапирающих свойотв.		
Nº	Наименование параметра	Значение
1.	Напряжение переключения, U _{во.} В	7000-8000
2.	Повторяющееся импульсное обратное напряжение, U _{RRM,} В	7500-8500
3.	Максимально допустимый средний ток в открытом состоянии, I _{TAV} , A,	2000-2500
4.	Ударный ток в открытом состоянии, I _{TSM} , кA, не менее	55
5.	Оптическая мощность управления, P _{LM,} мВт, не более	35
6.	Критическая скорость нарастания тока в открытом состоянии (di _T /dt) _{crit} , A/мкс, не менее	300
7.	Критическая скорость нарастания напряжения в закрытом состоянии (dU _D /dt) _{crit} , В/мкс, не менее	2000
8.	Время выключения, t _q , мкс, не более	630
9.	Заряд обратного восстановления, мкКл, при скорости спада тока di/dt = -5A/мкс, не более	6000
10.	Диапазон температур перехода, Т _і , °С	-40 ÷ +120

Тиристорный модуль на испытательном стенде

Опытный образец активного фильтра высших гармоник для КВПУ ПС 400 кВ Выборгская

По договору с ОАО «ФСК ЕЭС» ФГУП ВЭИ разработан, изготовлен и испытан на ОАО «Электровыпрямитель» многомодульный активный фильтр ММАФ-16к-600 для ПС 330/400 кВ Выборгская.

Номинальные параметры активного фильтра

напряжение 15,75 кВ

- Мощность 16,0 Мвар

 полоса частот активного подавления высших гармоник

от 3-й до 25-й

- погрешность селективного подавления канонических гармоник, не более 0.5 %

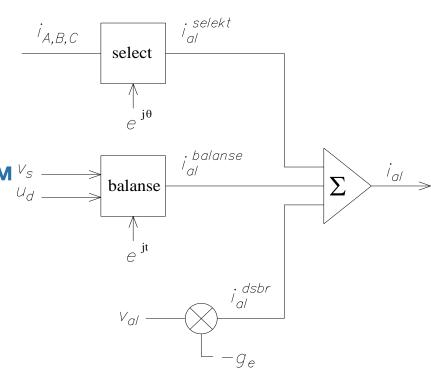
- мощность потерь АФВГ 16 кВт (1,35%)

Силовая часть

Шкаф управления

СУРЗА

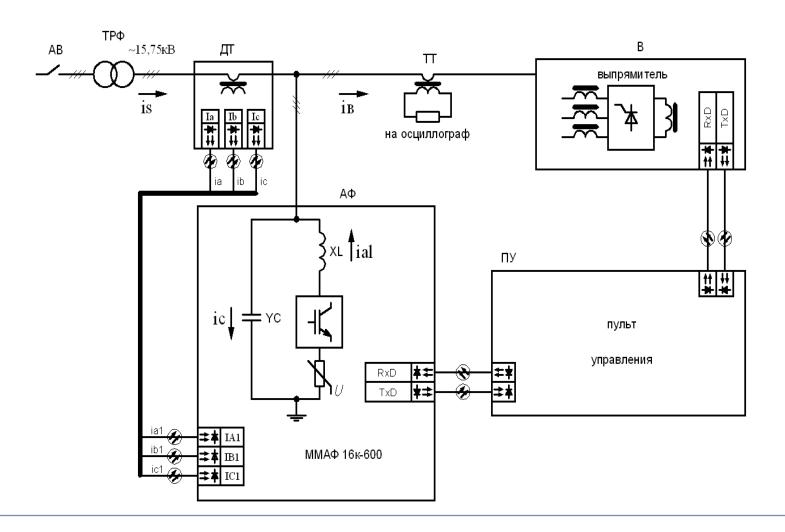
DSB-алгоритм для синтеза систем управления ММС в задачах обеспечения качества напряжений и токов сетей переменного напряжения


Задача синтеза разветвлённой многоконтурной системы, __ управляющей одновременно совокупностью большого числа параметров решена на основе DSB – алгоритма – последовательном ^{Vs} построении регуляторов трёх типов:

D – демпфирование (demp);

S – селективное подавление (select);

B – баланс (balance),


и последующим совмещении их действий.

ММАФ-16к-600. Испытательный стенд на ОАО «Электровыпрямитель»

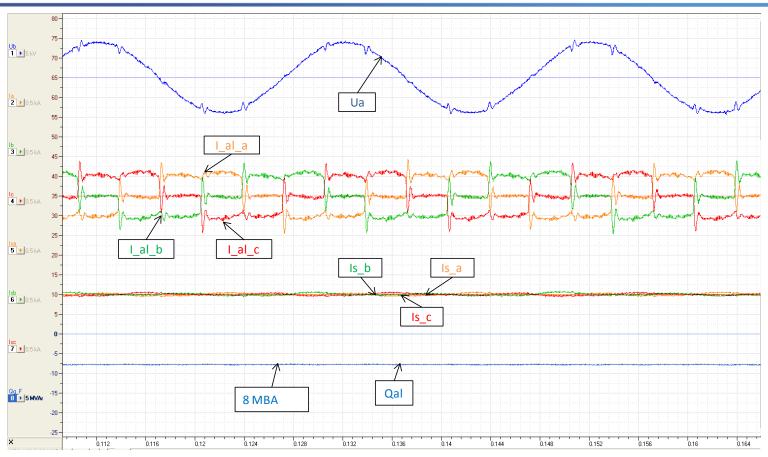


Схема комплексных испытаний

ММАФ-16к-600. Испытания

Работа АФВГ совместно с выпрямителем: стационарный режим – ток выпрямителя 600А при напряжении сети 10 кВ. Сверху вниз: фазное напряжение(Ua), фазные токи активного элемента (I_al), фазный сетевой ток (Is_a).

Проблемы сети 220 кВ, питающей ТРАНСИБ и БАМ

Средние коэффициенты несимметрии напряжения сети 220 кВ достигают 3-4% (норма 2%), а максимальные коэффициенты достигают 5-7% (норма 4%).


Средние коэффициенты искажений превышают норму почти постоянно.

Предельно допустимые искажения превышают норму более половины времени.

Опытный образец многомодульного активного фильтра ММАФ-16к-600 мощностью 16 Мвар в настоящее время решено установить на ПС 220 кВ Сковородино для устранения несимметрии и высших гармоник на шинах 110 кВ.

Комплектные вентильные преобразовательные установки (КВПУ) опытной передачи постоянного тока с высокотемпературным сверхпроводящим кабелем»

Номинальные параметры КВПУ

- •Номинальное постоянное напряжение КВПУ - 20 кВ.
- ■Номинальный постоянный ток 2,5 кА.
- •Номинальное напряжение сети переменного тока - 110 кВ.
- •Номинальная передаваемая мощность
- 50 MBт.

Разработаны и приняты Заказчиком:

- ≻общая схема КВПУ;
- >алгоритмы управления передачей постоянного тока;
- комплект электрических схем КВПУ;
- >технические требования к оборудованию КВПУ, в том вентильный преобразователь числе на CO реактором и системой охлаждения, сглаживающим преобразовательный трансформатор

Проведено исследование режимов работы и алгоритмов управления передачей постоянного тока на математической модели.

ЗАКЛЮЧЕНИЕ

- 1. Российская Федерация располагает актуализированными возможностями по разработке и изготовлению преобразовательного оборудования для электропередач и вставок постоянного тока мощностью от 50 до 3500 МВт на силовой отечественной элементной базе.
- 2. Для развития соответствующих технологий нужно только наличие проектов создания передач и вставок постоянного как для распределенных (оффшорных), так и магистральных электрических сетей

Спасибо за внимание