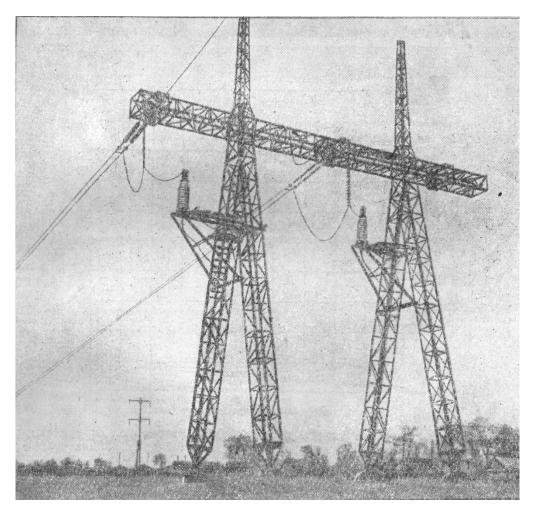

О СОСТОЯНИИ И ПЕРСПЕКТИВАХ РАЗВИТИЯ ВЛ ПОСТОЯННОГО ТОКА В РОССИИ

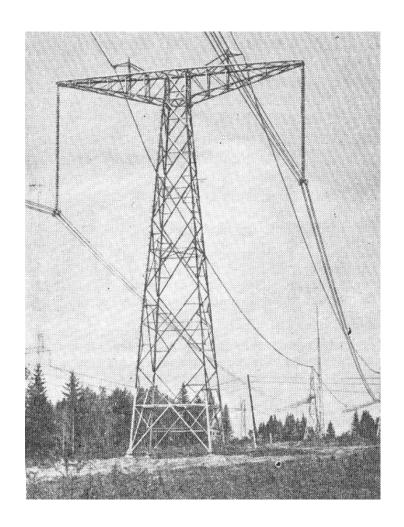
Отдел ТВН ОАО «НИИПТ» Владимирский Л.Л.

ВЛ ± 400 кВ Волгоград-Донбасс


1962 г.

Натурные исследования

Пролет опытной линии постоянного тока ± 400 кВ, НИИПТ, 1956-57 гг.


Развитие электрических сетей УВН в СССР

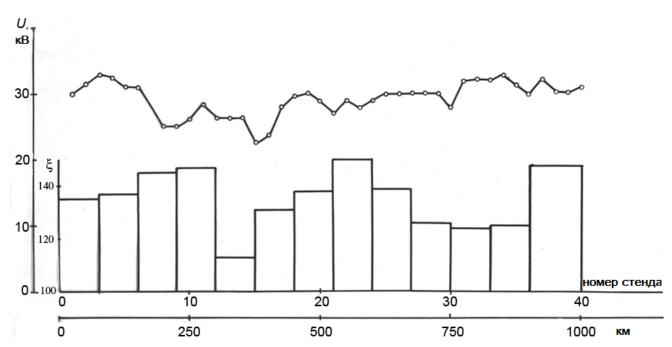


СССР длительно лидировал в технике передачи электрической энергии на дальние расстояния. Так было при освоении первых в мире ВЛ 500 и 1150 кВ Экибастуз-Кокчетав-Кустанай-Челябинск (ввод в эксплуатацию в 1982 г.), а также первых в Европе и вторых в мире (после Канады) ВЛ 750 кВ. Был в 1983 г. выполнен проект и построена воздушная линия электропередачи постоянного тока ± 750 кВ **Экибастуз-Центр** (без ввода в эксплуатацию)

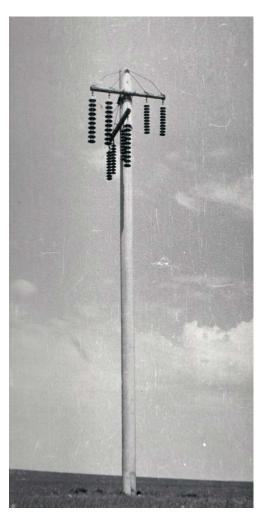
Натурные исследования

Опытная биполярная ВЛ ±750 кВ, Белый Раст, 1974 г.

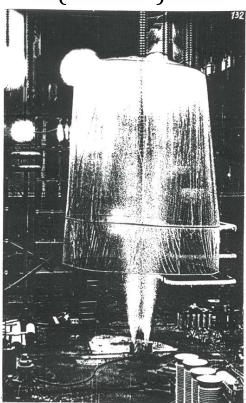
Натурные исследования



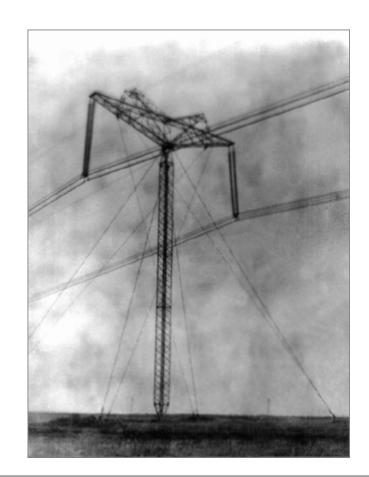
Пролет опытной линии постоянного тока ±750 кВ, НИИПТ


Каскад испытательных трансформаторов 2×600 кВ, НИИПТ

Натурные исследования загрязняемости изоляции по трассе ВЛ ±750 кВ

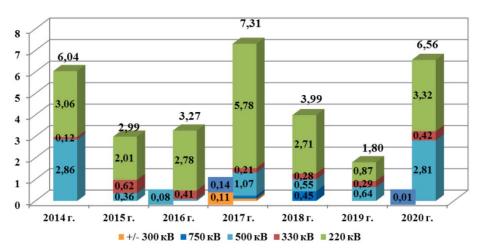

U - среднее разрядное напряжение, кВ

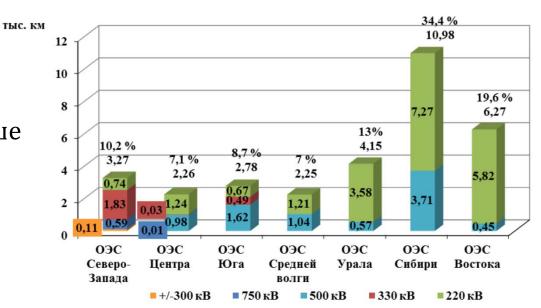
ξ - количество увлажнений



Лабораторные исследования

Исследование разрядных характеристик длинных гирлянд изоляторов (10 м) для ВЛ ±750 кВ при искусственном загрязнении и увлажнении (НИИПТ)


Промежуточная опора ВЛ постоянного тока 750 кВ Экибастуз – Центр


Из доклада ОАО «Институт «Энергосетьпроект» (Москва) «Развитие Единой энергетической системы России до 2020 года» (ТРАВЭК, Москва, 12.11.2014)

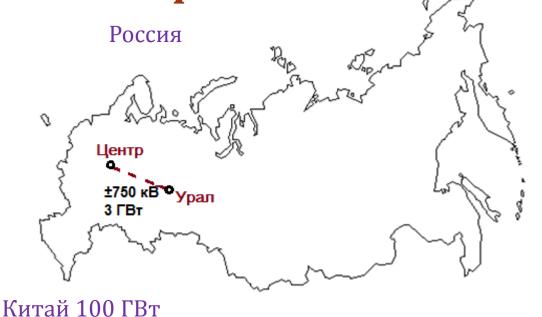
тыс. км

Вводы линий электропередачи напряжением 220 кВ и выше по ЕЭС России на период 2014-2020 гг.

Структура вводов линий электропередачи напряжением 220 кВ и выше по ЕЭС России на период 2014-2020 гг.

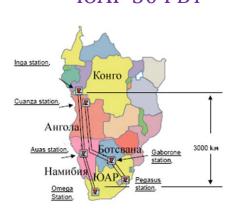
Генеральная схема размещения объектов электроэнергетики России до 2020 с учетом перспективы до 2030 года

Базовый вариант на 2025 г. предусматривает сооружение ВЛ ±750 кВ Урал-Средняя Волга-Центр.


Мощность 3000 МВт, протяженность 1850 км

Потенциальные и построенные ВЛ

постоянного тока в странах БРИКС


Индия 50 ГВт

ряд ВЛ УВН уже введен в действие

ЮАР 50 ГВт

Современный испытательный центр постоянного тока в Китае

Четырехполюсная опытная воздушная линия постоянного тока УВН

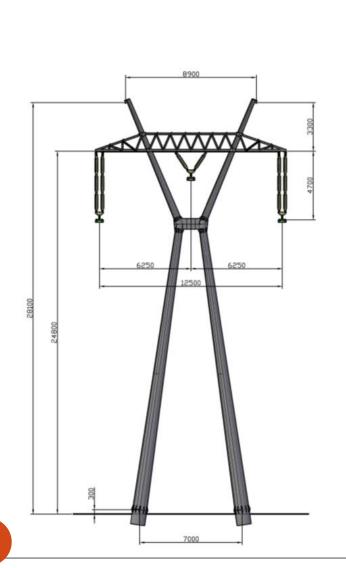
Опоры опытной воздушной линии

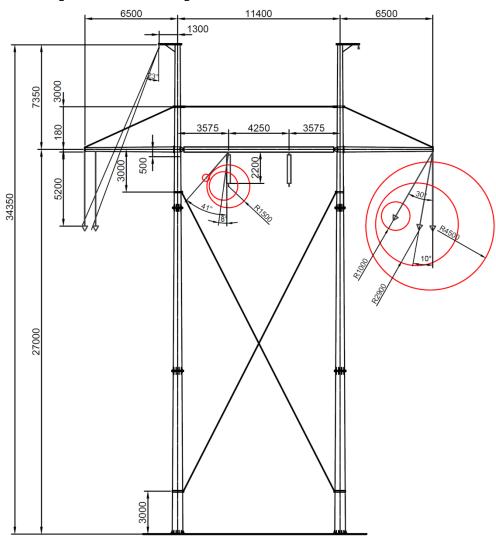
Основные элементы испытательного центра постоянного тока

Линейный полигон в составе проектируемого ФИЦ

Для создания современных ВЛ УВН, проведения испытаний и аттестации ВЛ и КЛ различного класса напряжения предусматривается создание в составе ФИЦ линейного полигона, состоящего из:

- опытной ВЛ постоянного тока (± 800 кВ);
- опытной ВЛ переменного тока (1000 кВ);
- комплекса высоковольтных испытательных установок (постоянного, переменного и импульсного напряжений);
- лаборатории испытания внешней изоляции электроустановок, в том числе в условиях загрязнения;
- лаборатории испытания кабельной продукции, в том числе при различных условиях прокладки.


Основные решения в области ТВН для создания ВЛ постоянного тока в России


Необходимо провести комплекс лабораторных и стендовых исследований и разработать основные технические решения для проектирования ВЛ УВН:

- Нормы проектирования;
- Выбор проводов и тросов;
- Выбор изоляции и габаритов линии;
- Выбор опор;
- Разработка системы грозозащиты;
- Оценка влияния ВЛ на окружающую среду и оптимизация конструкции ВЛ для выполнения экологических требований;
- Разработка безопасных методов работы под напряжением на ВЛ.

Промежуточные опоры для ВЛ ±300 кВ ЛАЭС-2-Выборгская

Предложение ОАО «НИИПТ» Принята в проекте по предложению ОАО «ФСК ЕЭС»

Из Решения конференции «ТРАВЭК» (12.11.14)

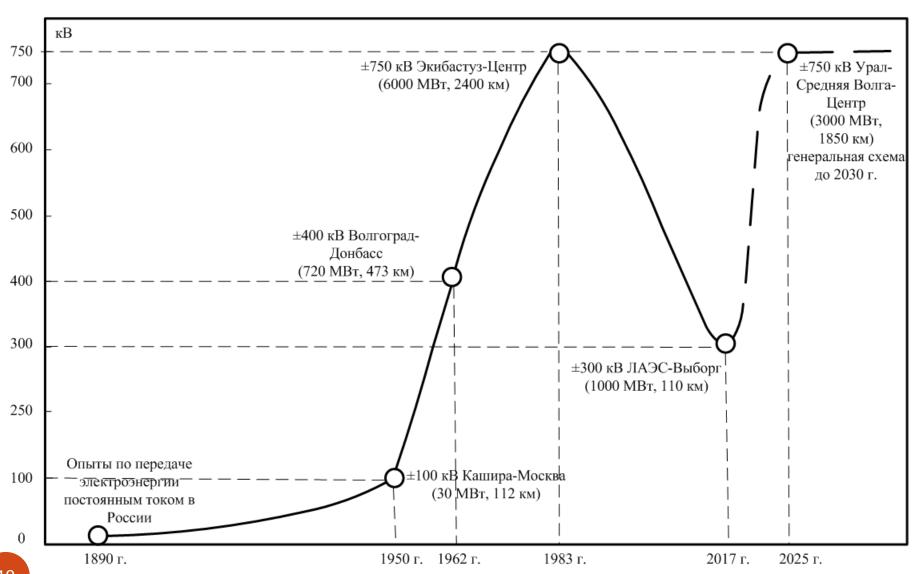
Рассматривались вопросы испытаний высоковольтного оборудования:

Методы и средства испытаний; **Испытательные центры**.

Представлены возможности испытательных центров ОАО «НИИПТ» (Санкт-Петербург), ОАО «ПК ХК ЭЛЕКТРОЗАВОД» (г. Москва), ООО «Масса»-завод «Изолятор» (с. Павловская Слобода Моск. Обл.), ОАО «ВНИИКП» (г. Подольск), ПАО «ВИТ» (г. Запорожье, Украина), ООО «Тольяттинский трансформатор» (г. Тольятти), ФГУП ВЭИ (г. Москва), ОАО «СЗТТ» (г. Екатеринбург).

Аттестат аккредитации

Испытательный центр высоковольтного оборудования ОАО «НИИПТ» (ИЦ ВЭ) создан на базе высоковольтного комплекса ОАО «НИИПТ» в 1995 году и аккредитован Федеральной службой по аккредитации (аттестат аккредитации номер № РОСС RU.0001.21ЭТ71 от 17.01.2014 со сроком действия до 27.01.2019).



Из Решения конференции «ТРАВЭК» (12.11.14)

Рекомендовать ОАО «Россети»:

- При проектировании и создании Федерального испытательного центра (ФИЦ) высоковольтного электротехнического оборудования учесть возможности существующих испытательных центров: ОАО «НИИПТ» (Санкт-Петербург), ОАО «ПК ХК ЭЛЕКТРОЗАВОД» (г. Москва), ООО «Масса»-завод «Изолятор» (с. Павловская Слобода Моск. обл.), ОАО «ВНИИКП» (г. Подольск), ПАО «ВИТ» (г. Запорожье, Украина), ООО «Тольяттинский трансформатор» (г. Тольятти), ФГУП ВЭИ (г. Москва), ОАО «СЗТТ» (г. Екатеринбург), с целью оптимального создания сети испытательных центров, включающих в себя ФИЦ и ряд значимых существующих центров в России.
- Учитывая важность и значимость испытательных центров ОАО «НИИПТ» и ФГУП ВЭИ рекомендовать руководителям указанных институтов рассмотреть возможность модернизации испытательных центров, имеющих аттестаты аккредитации Федеральной службы по аккредитации.

Эволюция ВЛ постоянного тока в России

Заключение

- 1. Возможности отдела ТВН ОАО «НИИПТ» в области развития ВЛ постоянного тока в настоящее время:
- Подготовка рабочей документации проекта воздушной линии ±300 кВ ЛАЭС-2-Выборгская
- Проработка основных технических решений по воздушной линии ±750 кВ Урал-Центр
- Разработка СТО ОАО «Россети»:
 - \circ «Воздушные линии электропередачи постоянного тока напряжений $\pm (300\text{-}800)$ кВ. Условия создания. Нормы и методы»
 - «Воздушные линии электропередачи постоянного тока напряжений $\pm (300\text{-}800)$ кВ. Организация эксплуатации и технического обслуживания. Нормы и требования»
- Участие в проектировании (подготовка ОТР и проектной документации) по линейному полигону в составе ФИЦ, включающего опытную ВЛ постоянного тока ±800 кВ
- Выполнение НИОКР по теме «Разработка современных конструкций металлических опор ВЛ постоянного тока ±(300–800) кВ, расположенных в различных условиях эксплуатации»
- Участие в научно-технических конференциях(симпозиумах) по различным аспектам, связанным с созданием и эксплуатацией ВЛ постоянного тока

Заключение

- 2. Провести в 2016 г. в России международную научнотехническую конференцию стран БРИКС и других заинтересованных стран и организаций по исследованиям, проектированию, созданию и эксплуатации ВЛ постоянного и переменного тока сверх- и ультравысокого напряжения
- 3. Обосновать стратегию развития электросетевого комплекса РФ с учетом сооружения дальних линий электропередачи постоянного тока сверх- и ультравысокого напряжения
- 4. Разработать Комплексную программу по созданию современной технологии передачи электроэнергии по ЛЭП (воздушным и кабельным) постоянного тока высокого напряжения